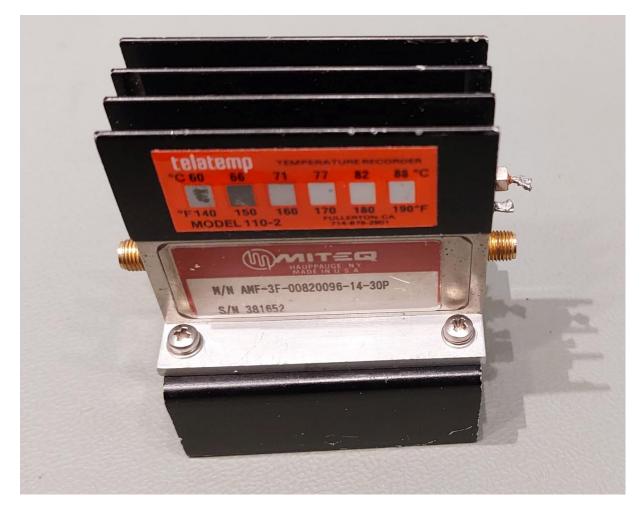
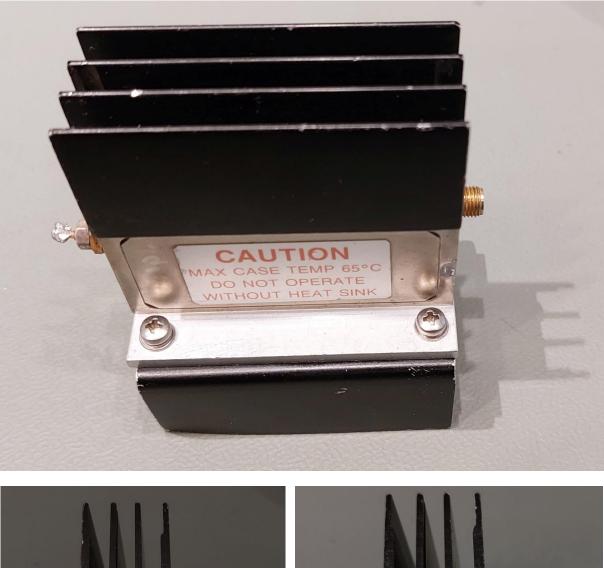
## Wideband Amplifier MITEQ AMF-3F-00820096-14-30P

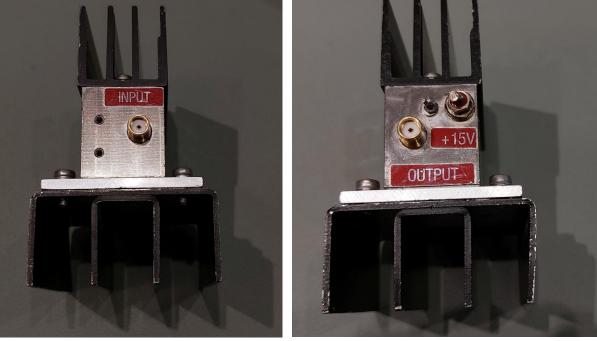
## Matthias, DD1US, July 17<sup>th</sup> 2022

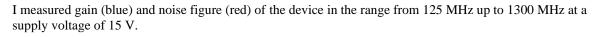
Recently I acquired another wide band amplifier from MITEQ. The part number is AMF-3F-00820096-14-30P.

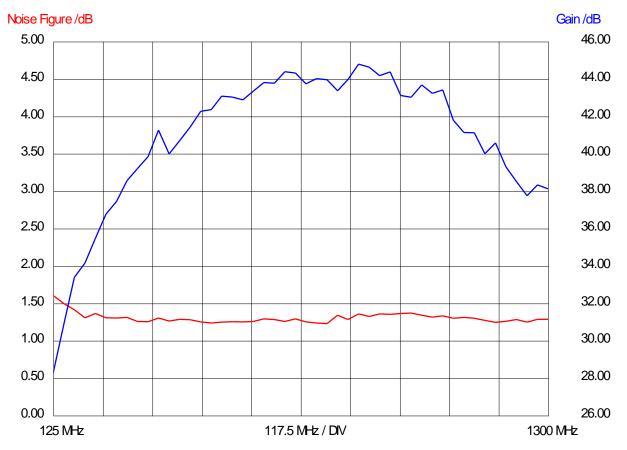
I did not find any specifications on the internet so I had to rely on the nomenclature MITEQ is typically using:


| Model:           | AMF-3F-00820096-14-30P                       |
|------------------|----------------------------------------------|
| Serial number:   | 381652                                       |
| Description:     | Wideband Amplifier                           |
| Frequency Range: | 820–960 MHz                                  |
| Gain:            | 3 stage amplifier thus approx. 40dB expected |
| Noise Figure:    | 1.4 dB                                       |
| Output Power:    | 30 dBm                                       |
| Supply Voltage:  | 15 V                                         |


My device has a current consumption of 845mA at a supply voltage of 15V.


Input and output connectors are SMA jacks.


The amplifier has a small heat sink attached in order to avoid getting it too warm as this certainly degrades not only the lifetime but also performance, especially the noise figure. On the amplifier a label warns to not exceed a maximum case temperature of 65°C. Another label on the heatsink records the maximum case temperature which was in my case  $66^{\circ}$ C. Therefore, I °mounted an additional heatsink on the opposite side of the amplifier.


Here are some pictures:





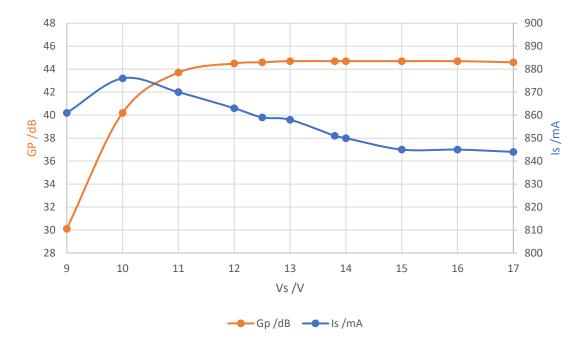






Below please find a table with the corresponding measurement values:

| Frequency | Gain /dB | NF/dB | Frequency | Gain /dB | NF/dB |
|-----------|----------|-------|-----------|----------|-------|
| 125 MHz   | 28.27    | 1.60  | 550 MHz   | 43.03    | 1.25  |
| 150 MHz   | 30.86    | 1.49  | 575 MHz   | 42.87    | 1.25  |
| 175 MHz   | 33.39    | 1.41  | 600 MHz   | 43.34    | 1.26  |
| 200 MHz   | 34.15    | 1.30  | 625 MHz   | 43.80    | 1.29  |
| 225 MHz   | 35.47    | 1.36  | 650 MHz   | 43.77    | 1.28  |
| 250 MHz   | 36.76    | 1.30  | 675 MHz   | 44.37    | 1.26  |
| 275 MHz   | 37.45    | 1.30  | 700 MHz   | 44.32    | 1.29  |
| 300 MHz   | 38.55    | 1.31  | 725 MHz   | 43.74    | 1.25  |
| 325 MHz   | 39.20    | 1.26  | 750 MHz   | 44.01    | 1.24  |
| 350 MHz   | 39.84    | 1.25  | 775 MHz   | 43.96    | 1.23  |
| 375 MHz   | 41.26    | 1.30  | 800 MHz   | 43.36    | 1.34  |
| 400 MHz   | 39.98    | 1.26  | 825 MHz   | 43.96    | 1.28  |
| 425 MHz   | 40.70    | 1.28  | 850 MHz   | 44.79    | 1.36  |
| 450 MHz   | 41.41    | 1.28  | 875 MHz   | 44.63    | 1.32  |
| 475 MHz   | 42.26    | 1.25  | 900 MHz   | 44.17    | 1.36  |
| 500 MHz   | 42.36    | 1.23  | 925 MHz   | 44.36    | 1.35  |
| 525 MHz   | 43.07    | 1.25  | 950 MHz   | 43.10    | 1.36  |


| Frequency | Gain /dB | NF/dB |
|-----------|----------|-------|
| 975 MHz   | 43.01    | 1.37  |
| 1000 MHz  | 43.67    | 1.34  |
| 1025 MHz  | 43.22    | 1.31  |
| 1050 MHz  | 43.41    | 1.33  |
| 1075 MHz  | 41.79    | 1.30  |
| 1100 MHz  | 41.13    | 1.31  |
| 1125 MHz  | 41.12    | 1.30  |
| 1150 MHz  | 40.00    | 1.27  |
| 1175 MHz  | 40.57    | 1.24  |
| 1200 MHz  | 39.30    | 1.26  |
| 1225 MHz  | 38.49    | 1.28  |
| 1250 MHz  | 37.75    | 1.25  |
| 1275 MHz  | 38.32    | 1.28  |
| 1300 MHz  | 38.12    | 1.28  |

As can be seen the device has a maximum gain of approx. 44.5dB at around 868MHz.

The gain is more than 43dB in the frequency range between 600MHz and 1050MHz. Below and above, it drops steadily to about 30dB at 145MHz respectively 38dB at 1300MHz.

The noise figure between 180MHz and 1300MHz is very flat below 1.4dB. I measured a minimum noise figure in that frequency range of 1.23dB.

Next, I measured the gain at 868MHz as function of supply voltage:



The gain is flat at Vs=12V and higher. The amplifier can probably still be used with a supply voltage of 11V. Below the drain drops significantly. The maximum current consumption of 876mA was measured at a supply voltage of 10V decreasing steadily to 845mA at a supply voltage of 15V.

Thus, this device features an excellent low noise figure with a high gain and high output power in a wide frequency range.

This is the first device from MITEQ I have measured with such an interesting feature set.

The only downside is the high current and thus power consumption of more than 12W @Vs=15V.

I am always grateful to get feedback and will be happy to answer questions.

Please direct them to the Email address which you will find below.

Best regards

Matthias DD1US

Email: DD1US@AMSAT.ORG

Homepage: http://www.dd1us.de