## Problems with the measurement of a 5.7GHz LNA

Matthias, DD1US, April 9th 2024

Recently I made some noise figure measurements at a 5.7GHz LNA. It is a Triquint TQL5000 MMIC on a demoboard. This MMIC is internally matched and intended for 5.8GHz WLAN 802.11 applications.

The key specification of this LNA, which is using a GaAs pHEMT technology are:

| Frequency range: | 4.9-5.9GHz |
|------------------|------------|
| Noise figure:    | 1.3dB      |
| Gain:            | 18dB       |
| P1dB:            | -13dBm     |
| IIP3:            | -3dBm      |
| Vs:              | 3.0V       |
| Is:              | 8mA        |

Here are some pictures of the device mounted on an original evaluation board from Triquint:









Here are the measurement results of gain (blue) and noise figure (red) versus frequency in the range 5 to 6GHz:

| Frequency | Gain /dB | NF /dB | Frequency | Gain /dB | NF /dB |
|-----------|----------|--------|-----------|----------|--------|
| 5680 MHz  | 17.58    | 1.78   | 6360 MHz  | 15.03    | 1.99   |
| 5700 MHz  | 17.54    | 1.74   | 6380 MHz  | 15.05    | 1.93   |
| 5720 MHz  | 17.48    | 1.78   | 6400 MHz  | 15.07    | 1.95   |
| 5740 MHz  | 17.48    | 1.80   | 6420 MHz  | 15.28    | 1.92   |
| 5760 MHz  | 17.55    | 1.78   | 6440 MHz  | 15.50    | 1.93   |
| 5780 MHz  | 17.60    | 1.80   | 6460 MHz  | 15.82    | 1.91   |
| 5800 MHz  | 17.64    | 1.77   | 6480 MHz  | 16.10    | 1.98   |
| 5820 MHz  | 17.64    | 1.79   | 6500 MHz  | 16.28    | 1.98   |
| 5840 MHz  | 17.67    | 1.77   | 6520 MHz  | 16.17    | 2.02   |
| 5860 MHz  | 17.60    | 1.81   | 6540 MHz  | 16.05    | 2.01   |
| 5880 MHz  | 17.54    | 1.81   | 6560 MHz  | 15.71    | 2.03   |
| 5900 MHz  | 17.46    | 1.79   | 6580 MHz  | 15.32    | 1.99   |
| 5920 MHz  | 17.30    | 1.78   | 6600 MHz  | 14.87    | 2.01   |
| 5940 MHz  | 17.06    | 1.85   | 6620 MHz  | 14.36    | 1.99   |
| 5960 MHz  | 16.86    | 1.82   | 6640 MHz  | 14.11    | 2.02   |
| 5980 MHz  | 16.73    | 1.84   | 6660 MHz  | 13.91    | 2.01   |
| 6000 MHz  | 16.57    | 2.22   | 6680 MHz  | 13.60    | 2.08   |
| 6020 MHz  | 16.43    | 1.86   | 6700 MHz  | 13.62    | 2.11   |
| 6040 MHz  | 16.37    | 1.86   | 6720 MHz  | 13.80    | 2.04   |
| 6060 MHz  | 16.40    | 1.87   | 6740 MHz  | 13.93    | 2.05   |
| 6080 MHz  | 16.47    | 1.85   | 6760 MHz  | 14.23    | 2.12   |
| 6100 MHz  | 16.53    | 1.85   | 6780 MHz  | 14.63    | 2.09   |
| 6120 MHz  | 16.68    | 1.92   | 6800 MHz  | 15.01    | 2.15   |
| 6140 MHz  | 16.88    | 1.86   | 6820 MHz  | 15.34    | 2.11   |
| 6160 MHz  | 16.91    | 1.89   | 6840 MHz  | 15.40    | 2.11   |
| 6180 MHz  | 17.02    | 1.85   | 6860 MHz  | 15.35    | 2.11   |
| 6200 MHz  | 16.95    | 1.87   | 6880 MHz  | 15.07    | 2.11   |
| 6220 MHz  | 16.77    | 1.89   | 6900 MHz  | 14.50    | 2.12   |
| 6240 MHz  | 16.50    | 1.88   | 6920 MHz  | 14.03    | 2.13   |
| 6260 MHz  | 16.24    | 1.89   | 6940 MHz  | 13.48    | 2.11   |
| 6280 MHz  | 15.95    | 1.91   | 6960 MHz  | 13.10    | 2.17   |
| 6300 MHz  | 15.58    | 1.92   | 6980 MHz  | 12.78    | 2.12   |
| 6320 MHz  | 15.30    | 1.99   | 7000 MHz  | 12.55    | 2.21   |
| 6340 MHz  | 15.18    | 1.91   |           |          |        |

When looking at the results I notice, that the noise figure measurement is pretty much spot on with the specifications. Please note that Triquint did some de-embedding of the losses on the evaluation board and determined a loss from the input connector to the input of the MMIC of 0.3dB, which adds directly to the noise figure. Subtracting 0.3dB from the measured value gets the noise figure quite close to the specified value of 1.3dB.

However there gain curve is quite "wobbly". I assume that this is a problem in my measurement setup. I am using a wideband preamplifier in front of my spectrum analyzer in order to improve the sensitivity of my measurement setup. I do not know the input match of this preamplifier and suspect it might be rather poor. As there is also a low loss  $50\Omega$  cable with a length of about 20cm between the output of the device under test (DUT) and the preamplifier this might also contribute to the measurement problem.



The problem of the "wobbly" gain curve is even more apparent when measuring gain and noise figure over a wider frequency range:

I am always grateful to get feedback and appreciate any hints on the problem I am encountering.

Please direct them to the Email address, which you will find at the end of this page.

Best regards

Matthias DD1US

Email: DD1US@AMSAT.ORG

Homepage: http://www.dd1us.de